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Kinetic roughening model with opposite Kardar-Parisi-Zhang nonlinearities
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We introduce a model that simulates a kinetic roughening process with two kinds of particle: one follows
ballistic deposition(BD) kinetics and the other restricted solid-on-solid Kim-KosterlKK) kinetics. Both of
these kinetics are in the universality class of the nonlinear Kardar-Parisi-Zhang equation, but the BD kinetics
has a positive nonlinear constant while the KK kinetics has a negative one. In our model, called the BD-KK
model, we assign the probabilitiesand (1-p) to the KK and BD kinetics, respectively. For a specific value
of p, the system behaves as a quasilinear model and the up-down symmetry is restored. We show that
nonlinearities of odd order are relevant in this low nonlinear limit.
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I. INTRODUCTION ah(x,t)
ot

=vo+ 7(x,t)+vV2h(x,t), ©)

The growth of interfaces by nonequilibrium kinetic
roughening is a very interesting topic of far from equilibrium hich describes the fluctuations of the SOS model with sur-
statistical mechanicgl-3]. In the two past decades, several face relaxatiorf7]. In Eq.(3), the first two terms on the right
models have been proposed, such as the ballistic depositigfige are related to the deposition of particles. This deposition

model [4], the Eden mode(5], the solid-on-solid(SOS  has a rate, and a noise with zero mean and variance given
model with surface relaxatiofg,7], the SOS model with by

restriction [8], and the SOS model with diffusiof®]. In
computer simulations, interfaces are described by a discrete (p(X,t)p(x",t")y=D &% (x—x") s(t—t"). (4)
set{h;(t)} that represents the height of sitat timet. Such
an interface hat ¥ sites, where_ is the linear size andis  The third term represents the surface relaxation process.
the dimensionality of the substrate. The roughness of the The exponents of Eq(3), obtained by Fourier analysis
interface is defined by [6,11], are B(d)=(2—d)/4, a(d)=(2—-d)/2, and z(d)
=2. Ford=1, these expressions giy&=1/4 anda=1/2.
Ld Ford=2, the scaling exponents afi=a=0.
2 1 — There are also some nonlinear equations that describe
@ (L’t):<F 21 (hi=h) > @ nonlinear kinetic roughening models. The best known non-
linear equation is the Kardar-Parisi-ZhafigPZ) equation
12
whereh is the mean height at timeand (- - -) means the 12
average over independent computational samples. In most of  dh(x,t) ) N )
the kinetic roughening models, the roughness obeys the g~ Vo™ 7(X,0)+vVeh(x,0)+ 5[ VA, D] Q)
Family-Vicsek dynamical scalingLO]
This equation is more complete than Edg) because the
nonlinear term may represent lateral growth or the appear-
), (2 ance of a driven force. Id=1, the exponents of this equa-
tion[12] are=1/3, a=1/2, andz=3/2. Ind=2, the ana-
Iytical solution is not known. Examples of models in the
where the functiorf(x) must beL independent. The rough- universality class of the KPZ equation are the ballistic depo-
ness behaves as~t# for short times (kt<L? and as sition (BD) model[4] and the SOS model with restriction
w,.(L)~L? in the steady state8 and a are the growth and [Kim-Kosterlitz (KK) model] [8]. In d=1, numerical simu-
roughness exponents, respectively, and are related to the digtions[13] indicate 3~0.30 anda~0.47 for the BD model
namical exponent through the relatiore=a/B. For some and f~0.332 anda~0.489 for the KK model. Ind=2,
systems,a=B=0 andz#0, which means that the rough- these exponents areg3~0.24, «~0.40 (BD) and B
ness does not obey E(®) and has a logarithmic behavior in ~0.25, a~0.40 (KK).
space and time. In this article we report on results of computer simulation
Kinetic growth models are also described by continuumof a growth model with two kinds of particle. Both of them
Langevin-like equations in the coarse-grained limit. Theseobey KPZ kinetics, but they have opposite signs of the non-
equations have terms that represent the main interactiomear constank. The effort to understand the nonlinearity in
among the incoming particles. An example of a linear equastochastic systems out of equilibrium is due to the great in-
tion is the Edwards-WilkinsoEW) equation[6], fluence of the nonlinearities on the scaling analysis, as noted

t
w(L,t)~L“f(F
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by Binderet al.[14]. The anisotropic KPZ equation, studied 0.34 . .
analytically in 1991 by Wolf15], also contains two nonlin-
ear terms with opposite signs that describe the distinguish- .
able directions of the substrate in a vicinal surface. He found, 0.32
by the renormalization group method, a logarithmic behavior
of the roughnessd= B=0) for opposite signs of the non-
linearity and power-law behavior when the nonlinearities Beff 0.30
have the same sign. These results were confirmed by Kim
et al. [16] by simulations of a discrete model with two dif-
ferent kinetics applied one in each direction of the substrate. 0.28
Another study along the same lines is the exact solution for a
generalization of the Gates and Westcott mdde] to arbi-
trary inclinations obtained by Pmafer and Spohpl8]. They 0.26O - S '80 S '90 00
found exact temporal logarithmic growth of the height cor- ) ) ' )
relation, when the system has curvatures with opposite signs. p

The motivation of our work is the paper published by g 1. The growth exponeng vs the parametep of the
Bernarde®t al.[19]. They studied the deposition of particles gp-kk model for L=50000 (filled circles with error bars L
with different radii on a cold substrate by Monte Carlo simu- 10000 (open squares and L=2000 (plus signs. The long-
lation. The authors found the growth exponght0.26 for  dashed line is the exact value of tBeexponent for the KPZ equa-
d=1. Thus they concluded that the universality class of thigion.
model is close to the EW cla$6]. However, there are two

nonlinear characteristics in the morphology of the model of . :
Bernardeset al: (i) porosity exists in the bulkyii) the rameter that controls the roughness. If the height of the par

. L = ) ticle deposited on the sité does not satisfy the height
growth velocity, that is,u=(dh/dt), is greater than the ., qiraint this particle is not incorporated in the interface.
deposition rate. These characteristics might indicate that the Both models are in the same universality class as the KPZ

up-down symmetryl{— —h) is broken[2]. The breakjng of equation. We have chosen these two models bedausee
this symmetry leads to the appearance of the nonlinear terrgD model generates a bulk with porosity and has the non-

in the KPZ equation. Bernardes al. also noted the need for linear parametek .-~ 0 because the arowth velocity is bia-
a logarithmic correction in the behavior of the roughness P BD™ X 9 y 9
er than the deposition ratg); (i) the KK model has\

[14,20Q, which indicates the presence of odd nonlinear termd o o
in the growth equation. In the next section, we describe oui~0 Pecause the kinetics of restriction makes the growth ve-

model. In Sec. Ill, we show results and give some discuslocity smaller than the rate of deposition.
sion. Finally, in Sec. IV, we show our conclusions. In our simulations, a unit of time means that we have
made L attempts at deposition. Moreover, all simulations
were done with a one-dimensional substrade=l) and, in
the KK model, the difference of height constraint=1.
The aim of creating a model with opposite KPZ nonlin-
earities is to verify the possibility of generating a linear pro-
cess(when the effective nonlinearity vanishesith the mor- Il. RESULTS AND DISCUSSION
phology of a nonlinear growth process. Our model is a
probabilistic combination of the ballistic deposition model ~ Figure 1 shows a plot of the effective growth exponent
and the SOS model with restrictigthe KK mode). The KK B¢t Vs the parametgp, for some system sizds The long-
model occurs withp probability, and the BD model occurs dashed line is the exact value gfobtained from the KPZ
with (1—p) probability. equation[12]. We have done 100 independent runs for each
Ballistic deposition is a process where particles areprobability and each size. We note that a minimum occurs at
dropped vertically onto a smooth substrate. The incoming* ~0.83 and this minimum is more pronounced as the sys-
particle is automatically joined to the growing cluster whentem size grows. Folt =50 000 we have applied the consecu-
its first contact with the growing interface occurs. In thetive slopes method2] in the log-log plots ofw vst in the
in-lattice version, we select at random a ditef the lattice  time interval 26<t<10 000, giving an ensemble @, ¢; ex-

Il. MODEL

and its new height is evaluated by the algoritfi] ponents for each value gf. Thus, we have estimated the
error bars around each value @f;. For p*=0.83, the
h{ =max(h;+1;hy;,), (6)  model is near to the EW class, because the growth exponent

IS Bei~0.27. However, the error bars in this region are
where{j} are the first neighbors of the site BD kinetics larger, indicating the need for more careful analysis of the
does not generate solid-on-solid deposition because it genesealing. These results show that the effective KPZ term dis-
ates a structure with porosity. Therefore, we define the growappeared ap*.
ing profile as the maximum height of each column. In order to better characterize the KPZ nonlinearity in our

The KK model is a SOS random deposition with the dif- model, we did a finite size analysis on the growth velocity. In
ference of height constrait —h;;;<<m, wheremis the pa- 1990, Krug and Meakii22] showed that the finite size cor-
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FIG. 2. Plot of the difference between the steady state growth g
velocities forL=10 andL =1280 vs the parametgr, which gives PR
; . ; < 0.80 =
the amount of KPZ nonlinearity in the system. The inset shows the g
behavior close to the crossover.
. . 0.75 ' ' ' ‘
rectionAv(L,t)=v(L,t)—v. for a model in the KPZ class 0 2000 4000 6000 8000

behaves as

Av(L)~—=AL~@ for t>L?

t

FIG. 3. Plots of the functionY(t,y,8) vs the timet: (@ &

@ =1/4 and small variations iy are performed(b) y=1/8 and small
where theaH exponent depends on the roughness exponeny,ariations iné are performed. The bold curves show the behavior of
TheAv correction goes to zero when the KPZ term vanishesthe function Y(t,1/8,1/4). The insets show the relative error
So, with Eq.(7), we can obtain the sign of the KPZ nonlin- AYI{Y) vs the scaling exponent related to each case.
earity and determine when the nonlinearity goes to zero as a
function of the tuning paramet@x Figure 2 shows a plot of =w(L,t)/t%logt)” vst, because this better emphasizes the de-
Av=v(L=10)—v(L=1280) vsp for the BD-KK model. viations of the behavior from this equation. So we measure
The finite size correction vanishes fpr=0.81 (see insgt  the relative erronY/(Y) of each curveY($é,vy,t) as a func-
very close to the value obtained at the minimum of ghes  tion of the variations iy and y. Figure 3a) shows plots of
p plot (see Fig. L Y(t,y) vst with §=1/4 and Fig. 8) shows plots ofY(t, )

We also checked the need for multiplicative logarithmicvst with y=1/8. The insets show the relative ertdy/{Y)
corrections in the scaling fgg=p*. When the growth equa- Vs the scaling exponent related to each caser 8, respec-
tion for a process has a sequence of odd nonlinear terms sutifiely. The two bold curves show the behavior {4, y,t)
as vst whené=1/4 andy=1/8. The relative error, for the two
cases, reaches a minimum when the exponert4/8 and
6=1/4, indicating that Eq(9) is a good description of the
temporal behavior of the roughness. This indicates that odd
nonlinear terms are relevant.

The nonlinear Eq(8) preserves the up-down symmetry,
but this is not obvious in the BD-KK model at=p*, nor in
the growth model of Bernardest al. Equation(1) can be
generalized for any momeigt of the height distribution, in
d=1, as

ah(x,t) #h(x,t)
pr —U(X,t)+V7+2n§;1 2n+1

ﬁh(X,t) 2n+1
oX

tS)
forn=1,2, ..., theroughness behaves g&4,20

w(L,t)~tY4(logt)Y® 9)
for t<L? So, if logarithmic corrections are accepted for
=p*, it means that the system is marginally in the EW class.
In order to show that Eq9) is really the best equation to
describe the system nepf, we rewrite this equation as

1 L
wf*(L,t>=<—21 <hi—F>Q>, (11)

and we concentrate on the behavior of odd moments, espe-
cially the third momentd=3), which is related to up-down
symmetry. The skewness, defined By w®/(w?)®? can
show us if the system has this symmetry. If the skewness is
null, the system has up-down symmetry because all odd mo-

w(L,t)~t%(logt)?, (10

and we do small variations around the exact valdiesl/4
and y=1/8. We analyze the validity of Eq10) by evaluat-
ing the deviations from the horizontal curvé(s,y,t)
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05 ' ' ' tends to S=0.28 and, forp=1.0, to S=—0.28. Forp
=p*, in the asymptotic limit, the skewness goes to zero,
suggesting the presence of up-down symmetry.

———————————— ARSI, — = = =
ANDAN A
ot LNV,
s IV. CONCLUSIONS

L] AA
s 00 A" e . We have studied the scaling properties of a model with
§ Fapd e A opposite signs of the KPZ nonlinearity through numerical
. s simulations of a model with two kinds of particle. Kim-

Kosterlitz kinetics occurs with the probabilityand the bal-
listic deposition model with the probability (1p). For a
specific value of the tuning paramete p*, we show that
the KPZ nonlinearity goes to zero and the up-down symme-

05 L - u L . try is restored, but there are morphological characteristics of
10 10 10 10 10 nonlinearity, such as lateral growth, due to the presence of
t ballistic deposition. We also show that logarithmic correc-

FIG. 4. Plots of the skewnesS as a function of the time for  10Ns are well adjusted for the temporal behavior of the sys-

p=0.0 (up triangles, p=1.0 (down triangle andp=p* (filled €M atp=p*. We have QOne a careful study of the expo-
circles. The skewness for the EW linear model is represented by'€nts of Eq(10) and obtained= 1/4 andy= 1/8 as the best

the plus symbols. The long-dashed straight lines indicatethg ~ Vvalues for these parameters, showing the need for the loga-
estimated values. All simulations were done wlitk 50 000. rithmic corrections and consequently the relevance of odd

nonlinear terms in the coarse-grained limit.
ments of the height distribution vanish. On the other hand,
for systems without up-down symmetry and in the KPZ
class, the steady skewness has a universal \j&|+€0.28
[23]. Figure 4 shows the skewneSss a function of the time We would like to acknowledge Jog&rancisco de Sam-
t for the model with positive nonlinearityp=0.0, up tri-  paio for reading this manuscript and Ariw® T. Bernardes
angles, with negative nonlinearity= 1.0, down triangles  for fruitful discussions. The numerical simulations were
and at the low nonlinear poinp=p* (filled circleg. As  made on an ensemble of Digital Alpha 500 Au of the Depar-
illustration, we also show the curve for the model with sur-tamento de ica, UFMG and on a Sun HPC 10000 of the
face relaxationf 7], which is a linear model and has up-down Cenapad MG-CO. This work was supported by CNPq,
symmetry (pluse$. We note that the skewness f@r=0 Fapemig, and Finep/PronéBrazilian agencies
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