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Kinetic roughening model with opposite Kardar-Parisi-Zhang nonlinearities
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We introduce a model that simulates a kinetic roughening process with two kinds of particle: one follows
ballistic deposition~BD! kinetics and the other restricted solid-on-solid Kim-Kosterlitz~KK ! kinetics. Both of
these kinetics are in the universality class of the nonlinear Kardar-Parisi-Zhang equation, but the BD kinetics
has a positive nonlinear constant while the KK kinetics has a negative one. In our model, called the BD-KK
model, we assign the probabilitiesp and (12p) to the KK and BD kinetics, respectively. For a specific value
of p, the system behaves as a quasilinear model and the up-down symmetry is restored. We show that
nonlinearities of odd order are relevant in this low nonlinear limit.
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I. INTRODUCTION

The growth of interfaces by nonequilibrium kinet
roughening is a very interesting topic of far from equilibriu
statistical mechanics@1–3#. In the two past decades, sever
models have been proposed, such as the ballistic depos
model @4#, the Eden model@5#, the solid-on-solid~SOS!
model with surface relaxation@6,7#, the SOS model with
restriction @8#, and the SOS model with diffusion@9#. In
computer simulations, interfaces are described by a disc
set$hi(t)% that represents the height of sitei at time t. Such
an interface hasLd sites, whereL is the linear size andd is
the dimensionality of the substrate. The roughness of
interface is defined by

v2~L,t !5K 1

Ld (
i 51

Ld

~hi2h̄!2L , ~1!

where h̄ is the mean height at timet and ^•••& means the
average over independent computational samples. In mo
the kinetic roughening models, the roughness obeys
Family-Vicsek dynamical scaling@10#

v~L,t !;La f S t

LzD , ~2!

where the functionf (x) must beL independent. The rough
ness behaves asv;tb for short times (1!t!Lz) and as
v`(L);La in the steady state.b anda are the growth and
roughness exponents, respectively, and are related to the
namical exponentz through the relationz5a/b. For some
systems,a5b50 andzÞ0, which means that the rough
ness does not obey Eq.~2! and has a logarithmic behavior i
space and time.

Kinetic growth models are also described by continu
Langevin-like equations in the coarse-grained limit. The
equations have terms that represent the main interact
among the incoming particles. An example of a linear eq
tion is the Edwards-Wilkinson~EW! equation@6#,
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l
ion

te

e

of
e

dy-

e
ns
-

]h~x,t !

]t
5v01h~x,t !1n¹2h~x,t !, ~3!

which describes the fluctuations of the SOS model with s
face relaxation@7#. In Eq. ~3!, the first two terms on the righ
side are related to the deposition of particles. This deposi
has a ratev0 and a noise with zero mean and variance giv
by

^h~x,t !h~x8,t8!&5Ddd~x2x8!d~ t2t8!. ~4!

The third term represents the surface relaxation process
The exponents of Eq.~3!, obtained by Fourier analysi

@6,11#, are b(d)5(22d)/4, a(d)5(22d)/2, and z(d)
52. For d51, these expressions giveb51/4 anda51/2.
For d52, the scaling exponents areb5a50.

There are also some nonlinear equations that desc
nonlinear kinetic roughening models. The best known n
linear equation is the Kardar-Parisi-Zhang~KPZ! equation
@12#

]h~x,t !

]t
5v01h~x,t !1n¹2h~x,t !1

l

2
@“h~x,t !#2. ~5!

This equation is more complete than Eq.~4! because the
nonlinear term may represent lateral growth or the appe
ance of a driven force. Ind51, the exponents of this equa
tion @12# areb51/3, a51/2, andz53/2. In d52, the ana-
lytical solution is not known. Examples of models in th
universality class of the KPZ equation are the ballistic de
sition ~BD! model @4# and the SOS model with restrictio
@Kim-Kosterlitz ~KK ! model# @8#. In d51, numerical simu-
lations@13# indicateb'0.30 anda'0.47 for the BD model
and b'0.332 anda'0.489 for the KK model. Ind52,
these exponents areb'0.24, a'0.40 ~BD! and b
'0.25, a'0.40 ~KK !.

In this article we report on results of computer simulati
of a growth model with two kinds of particle. Both of them
obey KPZ kinetics, but they have opposite signs of the n
linear constantl. The effort to understand the nonlinearity
stochastic systems out of equilibrium is due to the great
fluence of the nonlinearities on the scaling analysis, as no
©2001 The American Physical Society01-1
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by Binderet al. @14#. The anisotropic KPZ equation, studie
analytically in 1991 by Wolf@15#, also contains two nonlin-
ear terms with opposite signs that describe the distingu
able directions of the substrate in a vicinal surface. He fou
by the renormalization group method, a logarithmic behav
of the roughness (a5b50) for opposite signs of the non
linearity and power-law behavior when the nonlinearit
have the same sign. These results were confirmed by
et al. @16# by simulations of a discrete model with two di
ferent kinetics applied one in each direction of the substr
Another study along the same lines is the exact solution f
generalization of the Gates and Westcott model@17# to arbi-
trary inclinations obtained by Pra¨hofer and Spohn@18#. They
found exact temporal logarithmic growth of the height co
relation, when the system has curvatures with opposite si

The motivation of our work is the paper published
Bernardeset al. @19#. They studied the deposition of particle
with different radii on a cold substrate by Monte Carlo sim
lation. The authors found the growth exponentb'0.26 for
d51. Thus they concluded that the universality class of t
model is close to the EW class@6#. However, there are two
nonlinear characteristics in the morphology of the model
Bernardeset al.: ~i! porosity exists in the bulk;~ii ! the
growth velocity, that is,v5^dh̄/dt&, is greater than the
deposition rate. These characteristics might indicate that
up-down symmetry (h→2h) is broken@2#. The breaking of
this symmetry leads to the appearance of the nonlinear t
in the KPZ equation. Bernardeset al. also noted the need fo
a logarithmic correction in the behavior of the roughne
@14,20#, which indicates the presence of odd nonlinear ter
in the growth equation. In the next section, we describe
model. In Sec. III, we show results and give some disc
sion. Finally, in Sec. IV, we show our conclusions.

II. MODEL

The aim of creating a model with opposite KPZ nonli
earities is to verify the possibility of generating a linear pr
cess~when the effective nonlinearity vanishes! with the mor-
phology of a nonlinear growth process. Our model is
probabilistic combination of the ballistic deposition mod
and the SOS model with restriction~the KK model!. The KK
model occurs withp probability, and the BD model occur
with (12p) probability.

Ballistic deposition is a process where particles
dropped vertically onto a smooth substrate. The incom
particle is automatically joined to the growing cluster wh
its first contact with the growing interface occurs. In t
in-lattice version, we select at random a sitei of the lattice
and its new height is evaluated by the algorithm@21#

hi85max~hi11;h$ j %!, ~6!

where $j% are the first neighbors of the sitei. BD kinetics
does not generate solid-on-solid deposition because it ge
ates a structure with porosity. Therefore, we define the gr
ing profile as the maximum height of each column.

The KK model is a SOS random deposition with the d
ference of height constrainthi2h$ j %,m, wherem is the pa-
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rameter that controls the roughness. If the height of the p
ticle deposited on the sitei does not satisfy the heigh
constraint, this particle is not incorporated in the interfac

Both models are in the same universality class as the K
equation. We have chosen these two models because~i! the
BD model generates a bulk with porosity and has the n
linear parameterlBD.0 because the growth velocity is big
ger than the deposition ratev0; ~ii ! the KK model haslKK

,0 because the kinetics of restriction makes the growth
locity smaller than the rate of deposition.

In our simulations, a unit of time means that we ha
made L attempts at deposition. Moreover, all simulatio
were done with a one-dimensional substrate (d51) and, in
the KK model, the difference of height constraintm51.

III. RESULTS AND DISCUSSION

Figure 1 shows a plot of the effective growth expone
be f f vs the parameterp, for some system sizesL. The long-
dashed line is the exact value ofb obtained from the KPZ
equation@12#. We have done 100 independent runs for ea
probability and each size. We note that a minimum occur
p* ;0.83 and this minimum is more pronounced as the s
tem size grows. ForL550 000 we have applied the consec
tive slopes method@2# in the log-log plots ofv vs t in the
time interval 20,t,10 000, giving an ensemble ofbe f f ex-
ponents for each value ofp. Thus, we have estimated th
error bars around each value ofbe f f . For p* 50.83, the
model is near to the EW class, because the growth expo
is be f f'0.27. However, the error bars in this region a
larger, indicating the need for more careful analysis of
scaling. These results show that the effective KPZ term d
appeared atp* .

In order to better characterize the KPZ nonlinearity in o
model, we did a finite size analysis on the growth velocity.
1990, Krug and Meakin@22# showed that the finite size cor

FIG. 1. The growth exponentb vs the parameterp of the
BD-KK model for L550 000 ~filled circles with error bars!, L
510 000 ~open squares!, and L52000 ~plus signs!. The long-
dashed line is the exact value of theb exponent for the KPZ equa
tion.
1-2
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rectionDv(L,t)5v(L,t)2v` for a model in the KPZ class
behaves as

Dv~L !;2lL2a i for t@Lz, ~7!

where thea i exponent depends on the roughness expon
TheDv correction goes to zero when the KPZ term vanish
So, with Eq.~7!, we can obtain the sign of the KPZ nonlin
earity and determine when the nonlinearity goes to zero
function of the tuning parameterp. Figure 2 shows a plot o
Dv5v(L510)2v(L51280) vsp for the BD-KK model.
The finite size correction vanishes forp'0.81 ~see inset!,
very close to the value obtained at the minimum of theb vs
p plot ~see Fig. 1!.

We also checked the need for multiplicative logarithm
corrections in the scaling forp5p* . When the growth equa
tion for a process has a sequence of odd nonlinear terms
as

]h~x,t !

]t
5h~x,t !1n

]2h~x,t !

]x2
1 (

2n11
l2n11S ]h~x,t !

]x D 2n11

~8!

for n51,2, . . . , theroughness behaves as@14,20#

v~L,t !;t1/4~ log t !1/8, ~9!

for t!Lz. So, if logarithmic corrections are accepted forp
5p* , it means that the system is marginally in the EW cla

In order to show that Eq.~9! is really the best equation t
describe the system nearp* , we rewrite this equation as

v~L,t !;td~ log t !g, ~10!

and we do small variations around the exact valuesd51/4
andg51/8. We analyze the validity of Eq.~10! by evaluat-
ing the deviations from the horizontal curveY(d,g,t)

FIG. 2. Plot of the difference between the steady state gro
velocities forL510 andL51280 vs the parameterp, which gives
the amount of KPZ nonlinearity in the system. The inset shows
behavior close to the crossover.
04160
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5v(L,t)/td(log t)g vs t, because this better emphasizes the
viations of the behavior from this equation. So we meas
the relative errorDY/^Y& of each curveY(d,g,t) as a func-
tion of the variations ind andg. Figure 3~a! shows plots of
Y(t,g) vs t with d51/4 and Fig. 3~b! shows plots ofY(t,d)
vs t with g51/8. The insets show the relative errorDY/^Y&
vs the scaling exponent related to each case,g or d, respec-
tively. The two bold curves show the behavior ofY(d,g,t)
vs t whend51/4 andg51/8. The relative error, for the two
cases, reaches a minimum when the exponentsg51/8 and
d51/4, indicating that Eq.~9! is a good description of the
temporal behavior of the roughness. This indicates that
nonlinear terms are relevant.

The nonlinear Eq.~8! preserves the up-down symmetr
but this is not obvious in the BD-KK model atp5p* , nor in
the growth model of Bernardeset al. Equation ~1! can be
generalized for any momentq of the height distribution, in
d51, as

vq~L,t !5K 1

L(
i 51

L

~hi2h̄!qL , ~11!

and we concentrate on the behavior of odd moments, e
cially the third moment (q53), which is related to up-down
symmetry. The skewness, defined byS5v3/(v2)3/2, can
show us if the system has this symmetry. If the skewnes
null, the system has up-down symmetry because all odd

th

e

FIG. 3. Plots of the functionY(t,g,d) vs the time t: ~a! d
51/4 and small variations ing are performed,~b! g51/8 and small
variations ind are performed. The bold curves show the behavior
the function Y(t,1/8,1/4). The insets show the relative err
DY/^Y& vs the scaling exponent related to each case.
1-3



nd
Z

r
n

ro,

ith
al
-

e-
s of

of
c-
ys-
o-

ga-
dd

-

re
ar-
e
q,

b

T. J. da SILVA AND J. G. MOREIRA PHYSICAL REVIEW E63 041601
ments of the height distribution vanish. On the other ha
for systems without up-down symmetry and in the KP
class, the steady skewness has a universal valueuSu'0.28
@23#. Figure 4 shows the skewnessS as a function of the time
t for the model with positive nonlinearity (p50.0, up tri-
angles!, with negative nonlinearity (p51.0, down triangles!,
and at the low nonlinear pointp5p* ~filled circles!. As
illustration, we also show the curve for the model with su
face relaxation@7#, which is a linear model and has up-dow
symmetry ~pluses!. We note that the skewness forp50

FIG. 4. Plots of the skewnessS as a function of the timet for
p50.0 ~up triangles!, p51.0 ~down triangles!, and p5p* ~filled
circles!. The skewness for the EW linear model is represented
the plus symbols. The long-dashed straight lines indicate the60.28
estimated values. All simulations were done withL550 000.
-
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tends to S50.28 and, for p51.0, to S520.28. For p
5p* , in the asymptotic limit, the skewness goes to ze
suggesting the presence of up-down symmetry.

IV. CONCLUSIONS

We have studied the scaling properties of a model w
opposite signs of the KPZ nonlinearity through numeric
simulations of a model with two kinds of particle. Kim
Kosterlitz kinetics occurs with the probabilityp and the bal-
listic deposition model with the probability (12p). For a
specific value of the tuning parameterp5p* , we show that
the KPZ nonlinearity goes to zero and the up-down symm
try is restored, but there are morphological characteristic
nonlinearity, such as lateral growth, due to the presence
ballistic deposition. We also show that logarithmic corre
tions are well adjusted for the temporal behavior of the s
tem at p5p* . We have done a careful study of the exp
nents of Eq.~10! and obtainedd51/4 andg51/8 as the best
values for these parameters, showing the need for the lo
rithmic corrections and consequently the relevance of o
nonlinear terms in the coarse-grained limit.
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